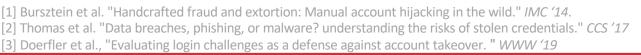

W3C TPAC 2022

Phish in Sheep's Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting

Xu Lin, Panagiotis Ilia, Saumya Solanki, Jason Polakis University of Illinois Chicago, USA

xlin48@uic.edu



UIC

September, 2022

Introduction

- Web integral to many facets of everyday life
 - User accounts contain sensitive and valuable data
- Account hijacking remains a major problem
- Phishing is a prevalent hijacking vector [1,2]
- Two-factor authentication (2FA) is a *critical* defense
 - Device-based challenges block >94% of phishingbased hijacking attempts, 100% of automated hijacking attempts [3]

UIC

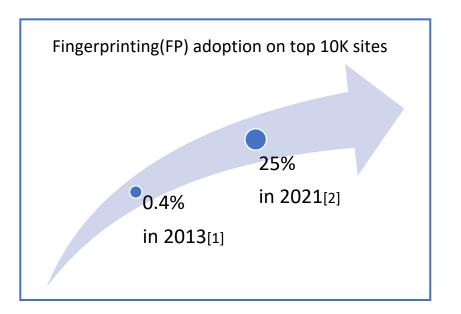
2

Risk-based authentication and two-factor authentication (2FA)

Sign In	Check Your Mobile Or Email
Username	We need to verify this Sign-In attempt. We've texted you a code as well as emailed you the same code.
jsmith	Enter 6 digit code sent to: ***-***-1234
Password	
······	Resend Code Update Mobile Nun
Remember this device Forgot username or password?	Verify and Sign In
Next	Didn't receive your verification code? You can Recover Your Account or Create New Account.
Don't have an account? Create a new one	

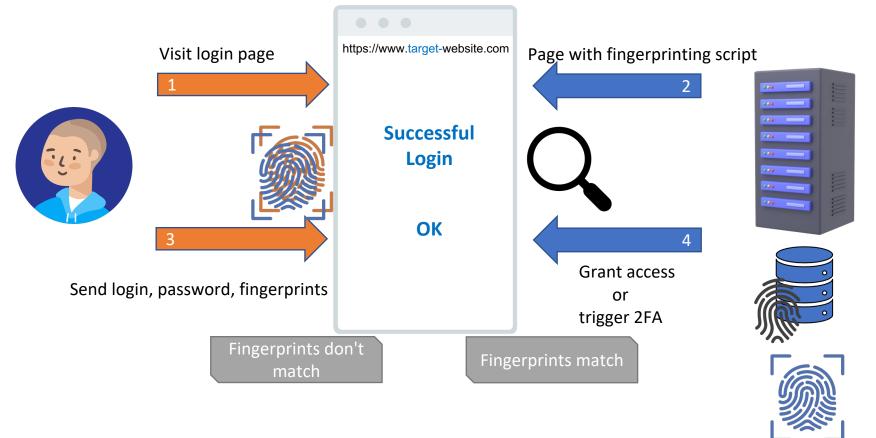
- 2FA creates friction for users ٠
- Certain websites only trigger 2FA for *suspicious* login attempts ٠

oile Number


xlin48@uic.edu

Browser fingerprint

Browser fingerprint


- information collected about a device for the purpose of identification
- can be trivially collected by *any* website through a series of JavaScript APIs

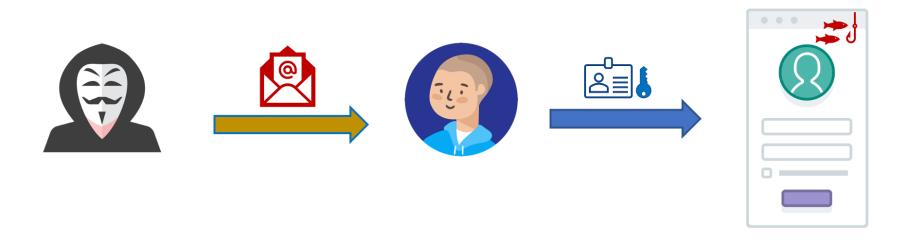
[1]N. Nikiforakis et al. " Cookieless monster: Exploring the ecosystem of web-based device fingerprinting, " S&P '13. [2]U. Iqbal et al. " Fingerprinting the fingerprinters: Learning to detect browser fingerprinting behaviors, " S&P '21.

4

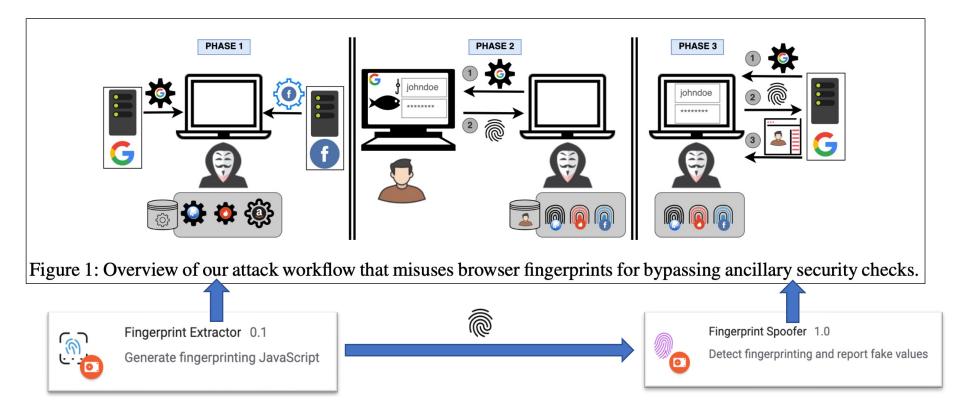
Advanced risk-based authentication that uses browser fingerprinting

UIC

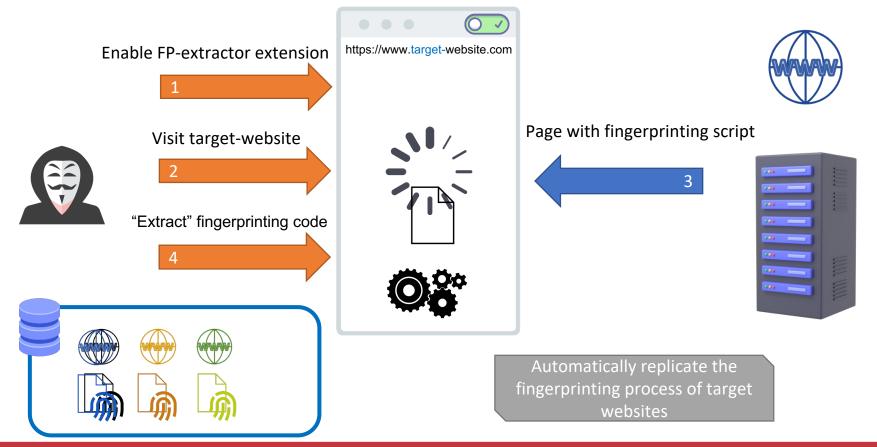
5


What can attackers do to trick websites into **not** considering a login suspicious?

Observation: websites can only learn about the user's environment through browser APIs* available to any website.

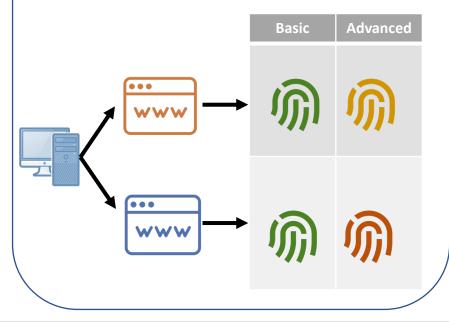


Threat Model


The attacker tricks the user into visiting a malicious website and entering their credentials.

Overview of our attack workflow

Phase1: attacker visits target websites and "extracts" their fingerprinting code

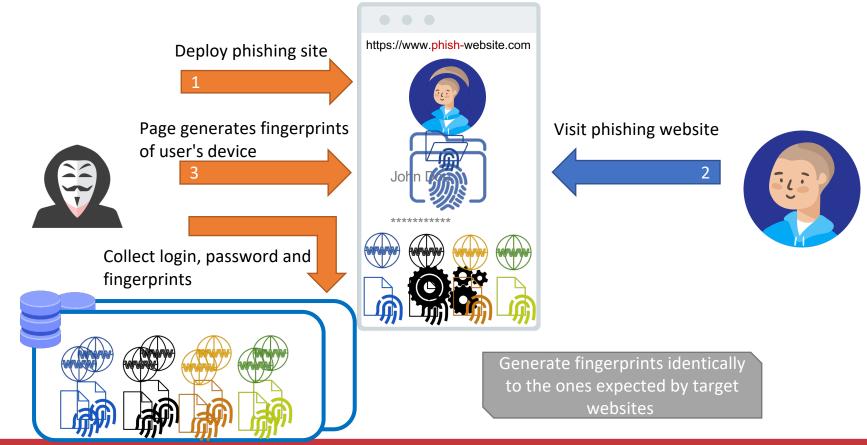


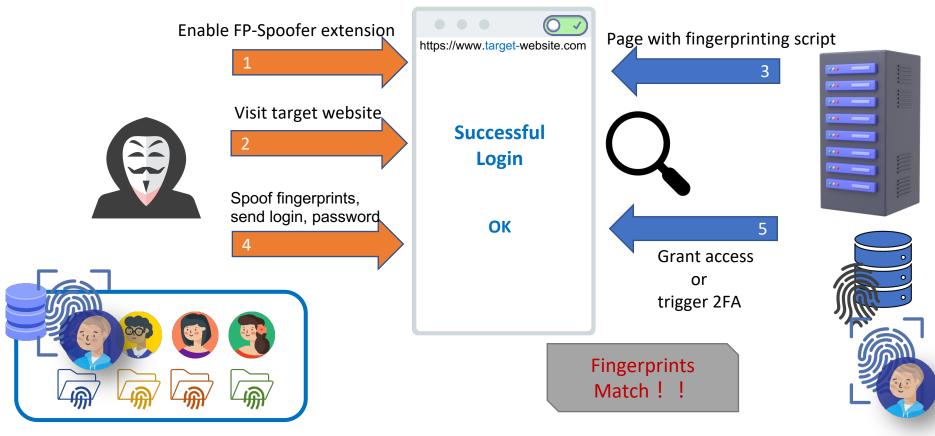
UIC

9

Replicate target website's *exact* fingerprint-generation

Same device has different fingerprints across websites


- **Basic** fingerprints are identical across websites
- Advanced fingerprints vary depending on the fingerprint generation
 - Canvas FP: render different images


• Font FP: detect different fonts

Phase2: attacker obtains user's credentials and fingerprints

Phase3: attacker spoofs fingerprints and bypasses 2FA mechanism

How FP-Extractor Extension Works

1. Inject code that hooks fingerprinting properties & methods.

Object.defineProperty(MediaDevices.pro totype, 'enumerateDevices', { value: () => { fpTrace.push('enumerateDevices'); return originalPromise;

target

website

2. Code runs at

"document start".

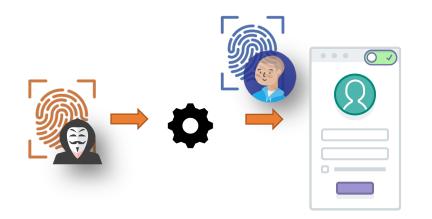
3. keep track of accesses with their arguments.

Dynamic FP attributes (e.g., WebGL) can vary across websites.

13

4. Generate and export JavaScript Code.

if (fpTrace.includes('enumerateDevices') { fpCode += `navigator.mediaDevices.enumerateDevic es().then...`


website

xlin48@uic.edu

UIC

How FP-Spoofer Extension Works

- Take victim's fingerprints as input
- Hook fingerprinting APIs
- Override/delete/add values to match the victim's values

For advanced FPs

Font Family Font a

Font b

Font c

Font d

- No need to manipulate intermediate values
- Only spoof the final values, e.g., toDataURL for Canvas, offsetWidth and offsetHeight for Fonts

xlin48@uic.edu

```
Object.defineProperty(HTMLSpanElement.p
rototype,
"offsetWidth", {
   get: function(){
      if (isSupportedFont) {
        return customWidth;
      } else {
        return fallbackFontWidth;
      }
   }
})
```

Fingerprint Spoofing Demo

attacker spoofs their device's fingerprints to mimic those of the victim's device

What about the real world ?

Experimental Evaluation

- Crawled Alexa top 20K

 Logged FP APIs being used

 Top sites employ more advanced
- Top sites employ more advanced fingerprinting techniques on login pages vs home pages

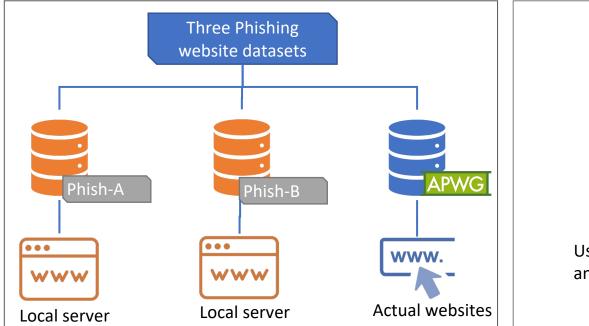
	Тор	10K	Top 10K-20K		
Website	Home	Login	Home	Login	
Navigator	5,510	5,403	5 <i>,</i> 589	5,371	
Window	5,261	5,104	5,272	<mark>4,968</mark>	
Screen	5,209	4,682	5,231	4,473	
Timezone	5,035	4,617	4,934	4,282	
Canvas	1,224	1,254	1 <i>,</i> 077	879	
Canvas Fonts	179	380	142	237	
WebRTC	221	313	192	210	
AudioContext	290	351	223	234	

- Select 300 popular sites that implement FP and support 2FA for manual analysis
 - > 14 use fingerprints for remembering user's device
 - > More prevalent among high-value financial services!
 - Risk-based authentication + FPs = emerging trend

	Website		Fingerprinting Tech	nnique		IP Address F	Restrictions	Vulnerable
		BasicFP	Canvas/WebGL	Fonts	Audio	IP Check	Bypass	
	Bank-A	✓	×	×	×	×		✓
	Bank-B	×	×	×	×	✓	×	×
	CreditCard	\checkmark	×	×	×	✓	\rightarrow	√
	Trading-A	\checkmark	×	×	×	×	-	 ✓
	Trading-B	×	×	×	×	✓	\rightarrow	√
	Tax-A	\checkmark	✓	×	×	✓	×	×
	Tax-B	✓	\checkmark	✓	×	×	-	✓
	Tax-C	\checkmark	✓	\checkmark	\checkmark	×	-	 ✓
	Tax-D	✓	\checkmark	✓	\checkmark	✓	×	×
	eCommerce-A	✓	\checkmark	×	×	×	-	✓
	eCommerce-B	✓	×	×	×	✓	×	×
	RideSharing	✓	\checkmark	\checkmark	×	✓	\rightarrow	 ✓
	Food&Beverage-A	✓	×	×	×	✓	0	 ✓
	Food&Beverage-B	\checkmark	×	×	x	✓	×	×
email ale	ert AdBlocking	✓	×	×	×	✓	0	✓
-checks	WebInfrastructure	✓	×	×	×	✓	×	×

Risk-based authentication mechanisms in popular web services

> We completely bypass 2FA in 9/14 websites that use FPs for authentication!


- Attack only prevented by IP address checks.
- ▶ We inject X-Forwarded-For header (used by proxies) with the user's IP to bypass IP-checks (\rightarrow).
- Certain sites only require an IP from the same city (°).

cookies

Evade finge	erprint spoofin	g detection
Inconsistency che	ecks	Spoof them all
e.g., userAgent and pl	latform	
"reflection"		Override "reflector"
e.g., toString()		
Native toDataURL	'function toDataURL() { [native code] }';	Object.defineProperty(Function.prototype, 'toString', { value: () => {
Tampered <i>toDataURL</i>	'function() { return fakeImageData; }'	return 'function toDataURL() { [native code] }'; }

What about phishing sites in the wild?

Phishing website datasets

Zhang, Penghui, et al. "Crawlphish: Large-scale analysis of client-side cloaking techniques in phishing." *2021 IEEE Symposium on Security and Privacy (SP)*. IEEE, 2021.

Use VisibleV8 to log native functions and property accesses

Jueckstock, Jordan, and Alexandros Kapravelos. "Visiblev8: In-browser monitoring of javascript in the wild." *Proceedings of the Internet Measurement Conference*. 2019

Phishing and Fingerprinting

Dataset	Time Period	Sites	JS	FP
Phish-A	31/05/2018 – 19/06/2019	71,343	39,618	29,312
Phish-B	31/10/2018 - 05/05/2020	82,431	40,777	36,733
APWG	05/05/2020 – 12/04/2021	173,269	93,568	85,491

Broad and representative view of the phishing ecosystem over a 3-year period.

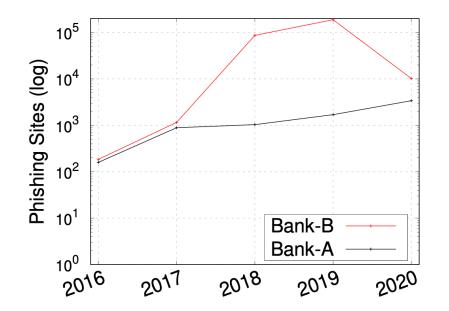
- > The majority collect fingerprints, with **73.98%**, **90.08%** and **91.36%** across the 3 datasets respectively.
- > An **increase** in the number of websites collecting browser fingerprints over time.

Phishing sites that implement fingerprinting techniques

- Phishing sites aggressively collect FPs
- Upward trend in most categories
 - 72.00%, 87.43% and 91.34% collect basic fingerprints
- Even advanced FPs being collected
 - between 9% and 14% collect advanced fingerprints

	Phishing Datasets			
Technique	Phish-A	Phish-B	APWG	
Navigator	27,578	34,650	84,239	
Window	24,848	23,650	73,258	
Screen	10,244	26,856	57,633	
Timezone	22,636	28,549	59,251	
Canvas	3,508	5,395	11,650	
Canvas Fonts	56	91	399	
WebRTC	536	165	1,938	
AudioContext	275	363	1,795	

Phishing sites that obtain all necessary fingerprints for bypassing 2FA


	Phish-A		Phis	Phish-B		APWG	
Target	Sites	Bypass	Sites	Bypass	Sites	Bypass	
Bank-A	83	1	685	14	330	74	
Bank-B	1549	-	2,683	-	327	-	
CreditCard	89	61	0	0	12	0	
Trading-A	0	0	0	0	6	6	
RideSharing	7	0	363	1*	1378	5*	
WebInfrastructure	0	0	1	1	220	219	

APWG dataset

- more recent
- visited actual websites

* Indicates a mismatch in the arguments passed to fingerprinting functions.

Are phishers adapting their targets?

The sharp decline in phishing sites targeting Bank-B could be due to the IP address requirement.

So what can be done to prevent this?

- Web services:
 - Always trigger 2FA challenges (most secure, least user-friendly)
 - Chain sessions using one new and one old Canvas element [Laperdrix et al., DIMVA '19] (susceptible to other attacks)
 - Use strict IP address checks and require the presence of specific cookies
 - Follow layered multi-modal strategy to enhance security
- Users (common best-practice guidelines):
 - Always enable 2FA when possible
 - Use stronger second factors (e.g., authenticator apps, U2F keys)
 - Use password managers, never reuse passwords across services
 - Anti-fingerprinting browsers/extensions can help in certain cases

Summary

- > First *fully automated* system for *replicating* and *replaying* fingerprints
- First *empirical analysis* of the use of browser fingerprinting for augmenting web authentication in the wild
- > Practical attacks that *completely bypass 2FA* in high-value services
- A large-scale study on the use of browser fingerprinting techniques by phishing sites
- > *Disclosure* of findings to affected vendors

Questions?

Feel free to reach out xlin48@uic.edu